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Bruhn Stiffener Moment of Inertia Equations

• Bruhn Chapter C10.10 (1973 edition) has 2 equations for the required 
moment of inertia for vertical stiffeners to use on non-buckling shear webs:
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 Equation C10.8

Figure C10.9

This also appears in the earliest 
edition of Bruhn (1942)

This is referred to as the 
“more recent” method

Questions: Where did these come from?  What assumptions are they based on?



Part 1: Bruhn Equation C10.8
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Note: parentheses missing from text

Bruhn, page C10.7



Given a shear web with vertical stiffeners:

d = stiffener spacing (in)
E = modulus of elasticity, web & stiffeners (psi)
h = depth of web (in)
Iv = required moment of inertia (in4)
Ks = shear buckling coefficient (non-dimensional)
t = web thickness (in)
V = applied vertical shear load (lb)

The shear buckling coefficient Ks will be shown later

Notation
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Derivation of Bruhn Equation C10.8

• Bruhn refers to a 1930 paper by Wagner.  I assume it is the following paper: 
Sheet Metal Airplane Construction, Herbert Wagner, ASME paper AER-53-
18, 1930

• The required stiffener moment of inertia can be derived from the shear 
buckling equation given by Wagner, but the first question is: where did his 
buckling equation come from?
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Shear Buckling Equation:

V = 

V = S = total shear load at section (lb)



where:
tkr = shear buckling load (lb/in)
ca = shear buckling coefficient (non-dimensional)
D1 = bending stiffness in x-direction (in-lb)
D2 = bending stiffness in y-direction (in-lb)
a = long dimension of plate (in)
b = short dimension of plate (in)

Derivation of Wagner’s Shear Buckling Equation

• Refer to NACA-TM-705, The Critical Shear Load of Rectangular Plates, Edgar 
Seydel, April 1933, which gives the shear buckling load of an orthotropic 
plate as:
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Derivation of Wagner’s Shear Buckling Equation

• Seydel’s shear buckling coefficient 
ca is a function of the effective 
aspect ratio and the orthotropy 
parameter defined as:
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Effective aspect ratio:

Orthotropy parameter:

Seydel, Fig. 3
(D3 = D12 + 2D66)



• A stiffened plate can be represented as an orthotropic plate by smearing the 
stiffnesses as follows:

Derivation of Wagner’s Shear Buckling Equation
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Assuming stiffeners in y-direction only:
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• Using the above plate stiffness terms, the effective aspect ratio can be 
written as:

Derivation of Wagner’s Shear Buckling Equation
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(long plate)

(stiffened in y-direction only)

therefore



Derivation of Wagner’s Shear Buckling Equation
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1

𝜃
→ 0 but therefore

• Using the above plate stiffness terms, the orthotropy parameter can be 
written as:



• Now we can get the shear buckling 
coefficient:

Derivation of Wagner’s Shear Buckling Equation
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→ ca = 8.125

Since:

therefore

(left hand side of Fig. 3)

(lowest curve in Fig. 3)



• Substitute terms into Seydel’s shear buckling equation to derive Wagner’s 
shear buckling equation:

Derivation of Wagner’s Shear Buckling Equation
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 (Wagner rounds this to 33)

Leaving it in this form allows you to account 
for different moduli of web and stiffeners

Seydel’s b is Wagner’s h

Nxycr = 𝑐𝑎 = 8.125 

4𝑐𝑎 = 4 8.125 = 32.5 

𝑆 =
33

ℎ
 
𝐸𝑡3

12
 
𝐸𝐼𝑣
𝑑
 
3

 

1/4

 

𝑉 = 𝑆 = 𝑁𝑥𝑦𝑐𝑟 𝑏 =
33

𝑏
 
𝐸𝑡3

12
 
𝐸𝐼𝑣
𝑑
 
3

 

1/4

 



• Now set global shear buckling load S equal to the applied shear load V and 
solve for the required stiffener moment of inertia:

Derivation of Bruhn Equation C10.8
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• Starts with shear buckling equation of an orthotropic plate, in which the 
stiffeners are smeared into the plate stiffness terms, then the stiffener 
moment of inertia is determined in terms of the other parameters

• Although Bruhn implies this moment of inertia will act as a panel breaker, 
such behavior was not really part of the derivation.  The derivation was for 
the required stiffener MOI to preclude global shear buckling.

• This equation would appear to be redundant if your design already passes a 
global shear buckling check

Recap of Bruhn Equation C10.8
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Part 2: Bruhn Figure C10.9
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Derivation of Bruhn Figure C10.9

• Bruhn calls this the “more recent” method

• It appears in the 1965 and 1973 editions, but not in the 1942 or 1949 
editions

• It is attributed to Chance Vought Corp. (label in lower right hand corner of 
Figure C10.9)
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Derivation of Bruhn Figure C10.9

• Figure C10.9 appears to have been derived by equating the global shear 
buckling of a stiffened panel to the local shear buckling of the web between 
stiffeners
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Global Shear Buckling of Stiffened Panel
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Seydel/Wagner buckling equation:

S = shear force (lb)

Convert to shear stress (psi):
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Where d is the spacing and h is the height



Local Shear Buckling of Web Between Stiffeners

19

𝐾𝑠 =
𝑘𝑠𝜋

2

12 1− 𝜈2 
 where:

Note the difference between 
“big K” and “little k”

Local Shear Buckling

h

x

y

d

𝜏𝑐𝑟 =
𝑘𝑠𝜋

2𝐸

12 1− 𝜈2 
 
𝑡

𝑑
 
2

 
ks = function of boundary conditions 
and aspect ratio d/h (d = short side)

𝜏𝑐𝑟 = 𝐾𝑠𝐸  
𝑡

𝑑
 
2

 

𝐹𝑠𝑐𝑟
𝑙𝑜𝑐𝑎𝑙 =

𝐸

 
𝑑

𝑡 𝐾𝑠
 

2 

𝑑 ≤ ℎ 

Where d is the short side



Shear Buckling Coefficient
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All edges clamped

b is the short side

Parabolic approximations for ks from Galambos (1998):



Derivation of Bruhn Figure C10.9
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Derivation of Bruhn Figure C10.9
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This is Bruhn Fig. C10.9, except for tiny 
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• This criterion equates global and local shear buckling and solves for stiffener 
moment of inertia in terms of other parameters

• Again, this MOI will not necessarily act as a panel breaker or enforce straight 
stiffeners, it simply gives the stiffener MOI required to force global and local 
shear buckling to occur simultaneously

• Again, this equation appears to be redundant if your particular design has 
already been shown to be good for both global and local shear buckling

Recap of Bruhn Figure C10.9
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Summary
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 Equation C10.8
This is the Iv required to suppress 
global shear buckling at load V

Bruhn’s Stiffener Moment of Inertia Equations:

This is the Iv required to force global 
and local shear buckling to occur at 
the same load



• The purpose here was mainly to understand where the Bruhn moment of 
inertia formulas came from.

• Whether the Bruhn formulas are the right ones to use in your case is a 
different question, not taken up here…

• It is also worth noting that other stiffener MOI criteria exist.  One is briefly 
discussed on the following pages…

Comments

25



• Stein & Fralich (1949) computed 
shear buckling loads for 
transversely stiffened panels

• The buckling coefficients were 
plotted vs. the EI per unit length 
of the stiffener compared to the 
bending stiffness D of the plate 
(EI/Dd)

• At some value of EI/Db, the 
buckling coefficient reaches a 
maximum value

• These transition values of EI/Db 
can be taken as the definition of 
the required stiffener MOI

Stiffened Shear Panels (Stein & Fralich)
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• Bleich (1952) used Stein & Fralich’s results to determine a formula for the 
required stiffener moment of inertia.  Bleich’s formula is presented in the 
book by Galambos (1998):

Bleich Formula
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Compare to Bruhn Fig. C10.9:
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• The Galambos/Bleich formula requires a greater stiffener MOI than Bruhn
• For a stiffener spacing equal to half the web height (d/h = 0.5):

• Galambos gives I/dt3 = 8.3

• Bruhn (Fig. C10.9) gives 1.5 (simple) or 2.8 (clamped)

• That’s a significant difference!

• The Bruhn criteria does not explicitly enforce a straight stiffener
• The derivations do not put a limit on stiffener deflection; they impose constraints on 

the buckling load(s)

• Undocumented FEM studies showed that while stiffeners sized to the Bruhn criterion 
increase the buckling load over an unstiffened web, the stiffeners do not remain 
straight; they bow along with the web

• In those same FEM studies, the Galambos/Bleich criteria came much closer to 
providing stiffeners that remain straight during buckling

Comments
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Bruhn Books

• Airplane Structural Design
• 1942, 348 pages (earliest version)

• Analysis and Design of Flight Vehicle Structures
• 1973, 979 pages (latest version)

• Analysis and Design of Missile Structures
• by Bruhn, Orlando, & Myers, 1967

• Bruhn Supplement
• by William F. McCombs, 1998

• Bruhn Errata
• by Bill Gran, 2008
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From: “One Small Step: The History of 
Aerospace Engineering at Purdue University”http://www.grancorporation.com/Bruhn_Errata_2nd_Edition_Draft2.pdf
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