The Johnson Parabola: A Brief Historical Note

Scott Malaznik
6/20/2022

Euler's Column Formula

- Euler published his studies on elastic beams and columns in 1744 and 1759
- He derived a formula for the load P at which a uniform section, axially loaded column becomes unstable

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}}
$$

Convert to Stress

- Engineers like to deal with stress, so divide $P_{c r}$ by A in Euler's formula
- We can also use an effective length L^{\prime} (or a restraint coefficient c) to handle different boundary conditions

$$
\begin{aligned}
& \sigma_{c r}=\frac{P_{c r}}{A}=\frac{\pi^{2} E I}{A L^{2}} \\
& \text { use } \rho^{2}=\frac{I}{A} \\
& \sigma_{c r}=\frac{\pi^{2} E}{(L / \rho)^{2}}
\end{aligned}
$$

where: $\rho=$ radius of gyration $L / \rho=$ slenderness ratio

$$
\begin{aligned}
& \text { define } L^{\prime}=\frac{L}{\sqrt{c}} \quad \text { where: } L^{\prime}=\text { effective length } \\
& c=\text { restraint coefficient } \\
& \sigma_{c r}=\frac{\pi^{2} E}{\left(L^{\prime} / \rho\right)^{2}} \\
& \sigma_{c r}=\frac{c \pi^{2} E}{(L / \rho)^{2}} \\
& c=1 \rightarrow \text { both ends simply-supported } \\
& c=4 \rightarrow \text { both ends clamped }
\end{aligned}
$$

Comparison to Test Data

- Engineers found that test data did not agree with Euler's formula for "short" columns
- Engineers developed many alternate formulas for design purposes to handle the short column range
- We will only consider Johnson's parabola here

John Butler Johnson

JOHNSON, JonN BUTLER (1850-1902). An American civil engineer and educator. He was born at Marlboro, Ohio, and graduated at the University of Michigan in 1878. He was a member of the Cnited States Lake and Mississippi River Surveys until 1883; professor of civil engineering at Washington University, St. Louis, Mo., from that date until 1898, and dean of the department of mechanics and engineering at the University of Wisconsin from 1898 until his death. The parabolic column formula, which he proposed, bears his name; his name is also connected with the roller extensometer, an instrument used in measuring the stretch in materials under test. In 1884 he assumed charge of the index department of the Journal of the Association of Engineering Societies, and in 1891 was put in charge of the timber-testing laboratory at St. Louis by the United States Forestry Bureau. His publications include The Materials of Construction, first published in 1897; Theory and Practice of Surceying (Sth ed., 1904); Engineering Contracts and Specifications (3d ed., 1904); and he was joint author of Modern Framed Structures (1893).

Johnson's Parabolic Formula

- In his 1893 book, J. B. Johnson proposed a parabola for the short column range:

THE THEORY AND PRACTICE

OF
MODERN FRAMED STRUCTURES.

NEW YORK:
JOHN WILEV \& SONS, 53 East Tenth Street. 1893.

Page 148: A New Formula. $\quad p=f-b\left(\frac{l}{r}\right)^{2}$.
To find the Equation of the Parabola having its Vertex at the Elastic Limit on the Axis of Loads, and Tangent to Euler's Curve.

Johnson's Parabolic Formula

- The vertex of the parabola (at $L / \rho=0$) was to be at the Elastic Limit of the material

$$
p=f-b\left(\frac{l}{r}\right)^{2} .
$$

- The constant b was computed to make the parabola tangent to Euler's formula

Frg. 298.-The Author's Parabolic Column Formula fitted to Tetmajer's Tests of Steel Columns. (Communications, vol. rv.)

Johnson's Parabolic Formula

- Johnson's k would be our $c \pi^{2} E$
- For f (elastic limit), we would use $F_{c y}$ (compressive yield strength)
- This equation is for primary instability of compact cross-sections, i.e. those that are not susceptible to local buckling before failure (see later note)

Eq. Tang. Parabola, $\quad p=f-\frac{f^{2}}{4^{k}}\left(\frac{l}{r}\right)^{2}$.
Eq. Euler's Curve, $\quad p=\frac{k}{\left(\frac{l}{r}\right)^{2}}$.

Use on Airplane Structures

- Johnson's Parabola has been used for the structural design of airplanes almost from the beginning of flight
- see following pages for a few examples...

1920 U.S. Army Air Service Handbook

Structural Analysis and Design

OF Airplanes

ENGINEERING DIVISION
McCOOK FIELD
DAYTON, OHIO
June, 1920

The column formula that agrees best with test data on columns, whose L / ρ is less than the lower limit to which the Euler formula is applicable, is J. B. Johnson's parabolic formula,

$$
\mathrm{P} / \mathrm{A}=\mathrm{f}-\frac{\mathrm{f}^{2}}{4 \mathrm{c} \pi^{2} \mathrm{E}}(\mathrm{~L} / \rho)^{2}
$$

$\mathrm{f}=$ Yield point of material
$c=A$ constant with same values as in Euler's formula.

1920 U.S. Army Air Service Handbook

1920 U.S.
 Army Air Service Handbook

Note they plotted L/p increasing to the left!

ANC-5 (Predecessor to MIL-HDBK-5)

ANC-5

STRENGTH OF AIRCRAFT ELEMENTS

Issued by the

ARMY-NAVY-COMMERCE
COMMITTEE ON AIRCRAFT REQUIREMENTS
UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON : 1988

ANC-5

1938 Edition

FIG. I-3. VARIOUS COLUMN CURVES IN NON-DIMENSIONAL FORM

Thin-Walled Sections

- For thin-walled sections, Johnson's parabola can be used, but in this case the allowable stress at $L^{\prime} / \rho=0$ would be the crippling strength of the section $F_{c c}$ (see Rivello, section 16-4)

Compact Section

Yield strength of material

Thin-Walled Section

References (most are on internet)

- Euler, De Curvis Elasticis, 1744
- Euler, Sur la force des colonnes, 1759
- Johnson, Theory and Practice of Modern Framed Structures, Wiley, 1893
- Tetmajer, Die Gesetze der Knickungsfestigkeit der technisch wichtigsten Baustoffe, 1896
- Johnson, The Materials of Construction, Wiley, 1897
- Structural Analysis and Design of Airplanes, Second Edition, U.S. Air Service, 1920
- ANC-5, Strength of Structural Elements, Army Navy Commerce Committee, 1938
- Rivello, Theory and Analysis of Flight Structures, McGraw-Hill, 1969

