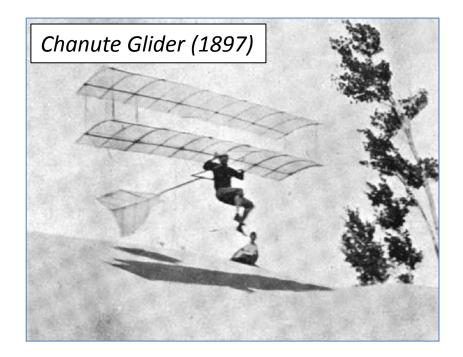
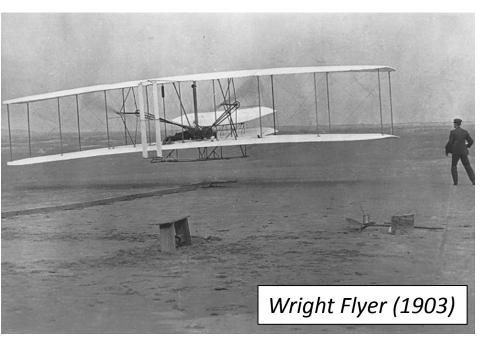
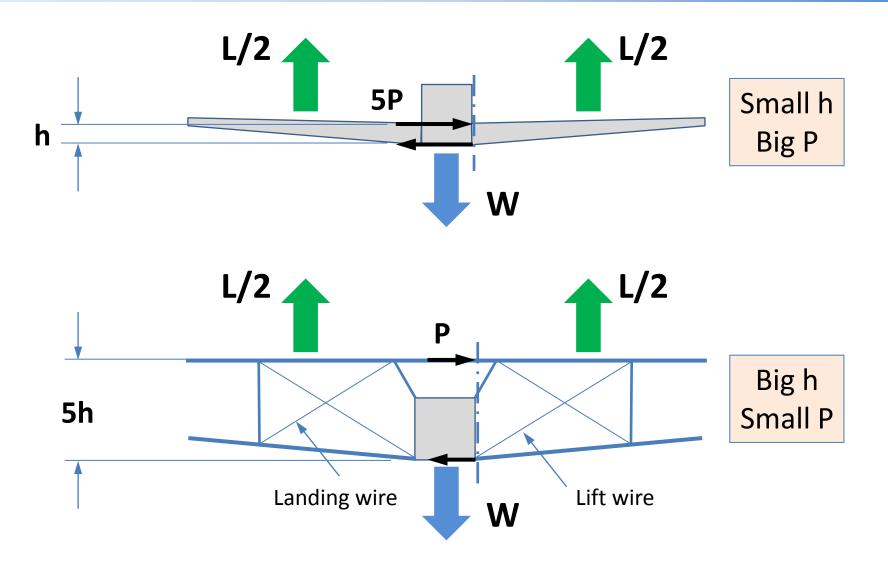
Structural Analysis of a World War One Biplane

Scott Malaznik SAWE Western Regional Conference November 6, 2015

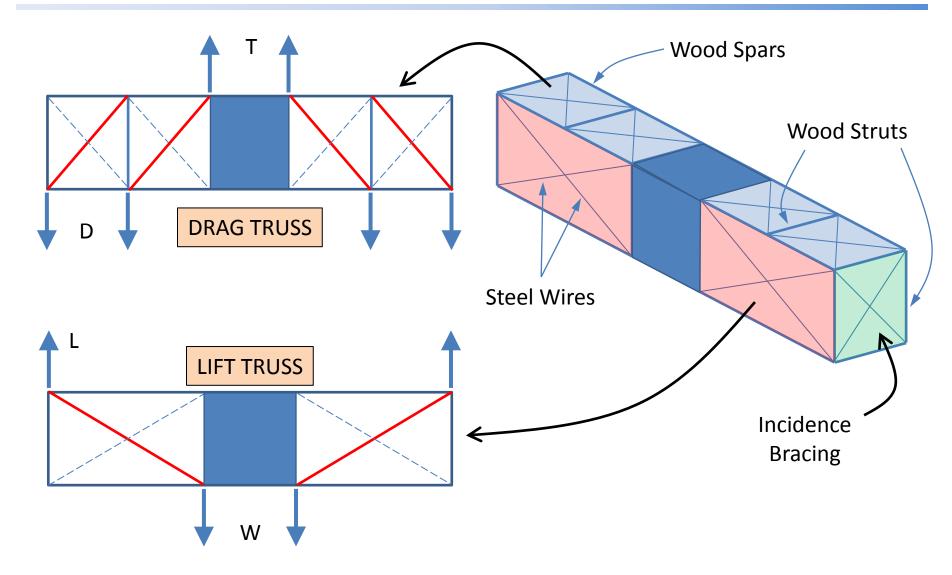
World War One Fighters



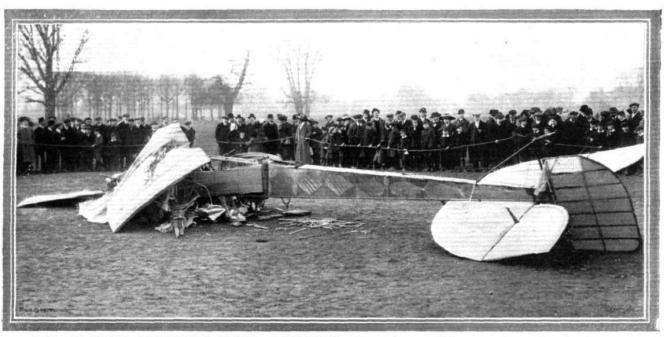




In the Beginning...



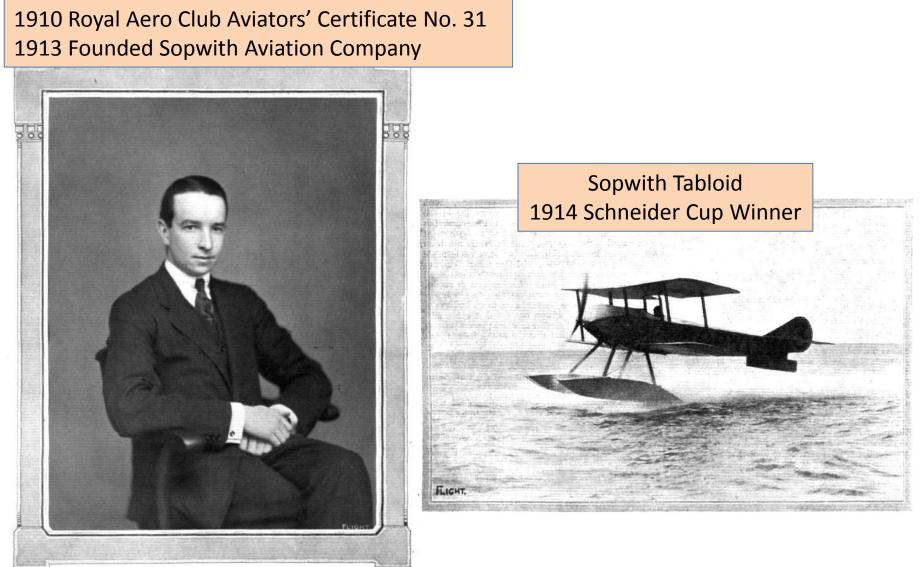
Structural Comparison


Truss Action

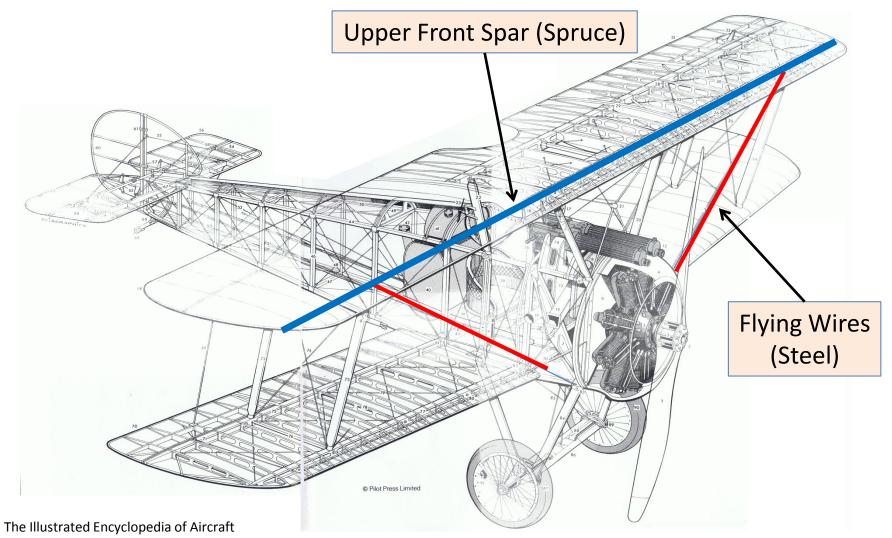
British Monoplane Ban

THE COLLAPSE OF MONOPLANE WINGS.

Royal Flying Corps bans monoplanes Oct 1912 – Feb 1913

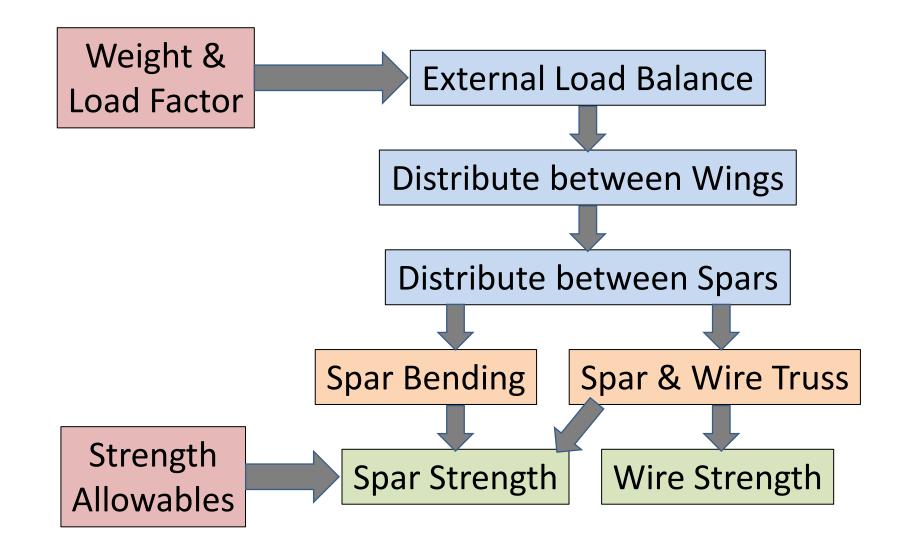

MR. GRAHAM GILMOUR'S FATAL ACCIDENT .- General view of the monoplane after the disaster.

REPORT OF THE GOVERNMENT COMMITTEE ON MONOPLANE ACCIDENTS


Sopwith Camel (1917)

	Camel	Cessna 150	
Engine (hp)	130	100	
Area (ft ²)	231	160	
Span (in)	336	400	
Weight (lb)	1453	1600	
Max Speed (mph)	115	122	
t/c	0.06	0.12	

Mr. T.O.M. Sopwith (1888-1989)



Camel Structure

Volume 9, Issue 102 Orbis Publishing, 1983

Structural Analysis Steps

	Weight	% TOTAL
	lb	
STRUCTURE		
Top Plane	104	
Bottom Plane	90	
Struts	15	
External Bracing Wires	20	
TOTAL WINGS	229	16%
Tail Planes	13	
Elevators	8	
Fins	2	
Rudders	3.5	
TOTAL TAIL	27	1.8%
Fuselage	108	
Chassis	70	
Tail Skid	3	
Controls	14	
TOTAL BODY	195	13%
TOTAL STRUCTURE	451	31%
POWER		
Engine Dry	375	
Propeller	30	
Engine Accessories	27	
Fuel Tanks	24	
Oil Tanks & Piping	13	32%
Fuel	180	
Oil	63	17%
TOTAL POWER	712	49%
LOAD		
Crew	180	
Instruments	10	
Guns & Ammunition	10	
TOTAL LOAD	291	20%
TOTALLOAD	231	2070
TOTAL WEIGHT OF MACHINE	1454	100%

Weight Breakdown

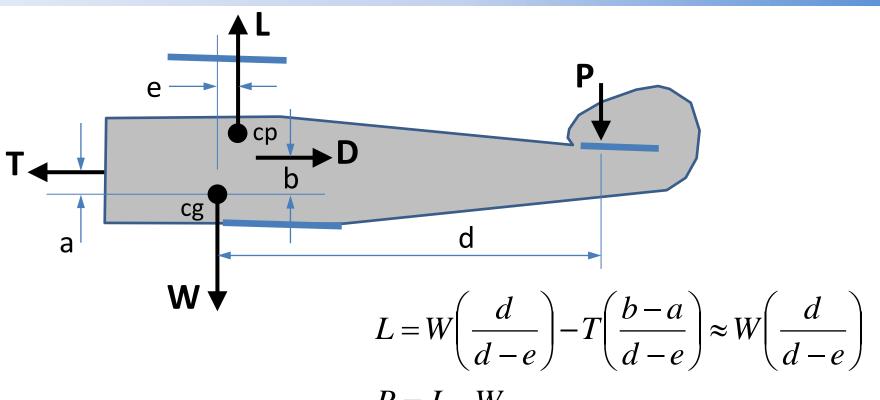
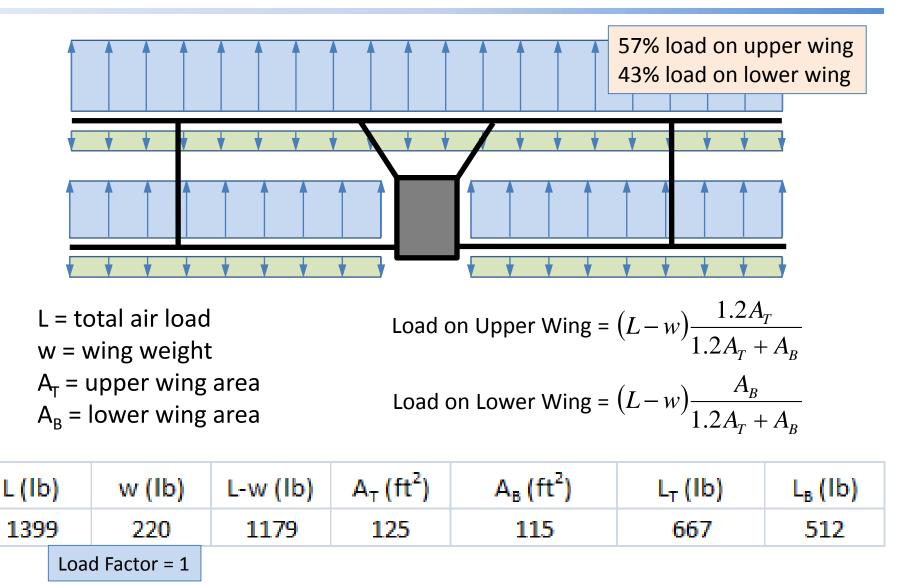
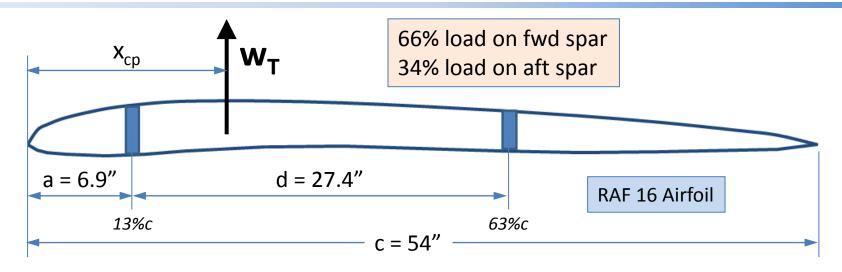

ENGINE: 130 CLERGET AEROPLANE: SOPWITH CAMEL							IEL, F 1/3	
1					SINGLE SEATER FIGHTER			
						IS BIPLANE		
	MAX		RP.M.	TOP WING	SPAN 28	CHOR	,	
	Nº FITTED ON			BOTTOM -	: 21	• •		
	AIRSCREW R.P.M			MIDDLE -	<u>· ·</u>			
			P. HOUR . 5715 lbs	GAP TOP TO	ENGTH IS		T 8 6	
	Ou.			GAP+ CHO		TOP TO DINED		
						LOWER WING &		
		÷			_	_		
	AREAS 9	1			WEIGHTS LAS	WE/S&FT.	% WEIGHT	
	121	1.	TOP PLANE		104	.9	1 1	
	110		BOTTOM PLANE		90		1 1	
		ÿ	MIDDLE PLANE				1	
		Ī					1 1	
1]>		N= 8)	15]	
α		1	EXTERNAL BRAC	ING WIRES	20			
10	231	1	TOT	AL WINGS.	229	1.0	15-75	
I+		┢─		AC 111103.			1	
10	14		TAIL PLANES		13	. 9	j	
1 -	10-5	ز[ELEVATORS		8	• 8	1	
12	3	Ē	FINS		2		1	
lα	4-9	₽.	RUDDERS		35	•7]	
۴	32.4		Tot	27	•	1.45		
S			FUSELAGE		108		74.	
		2	CHASSIS		70		40	
1		10	TAIL SHID		3		1	
1		۵	CONTROLS		14		9	
		1	Тот	AL BODY.	195	-845	13:4	
L	TOTAL WEI	GH	T OF STRUCT	JRE UNIT.	451.	1. 95	31.0	
			ENGINE DRY		375	WT/H P		
					30	-2	1 i	
-	GALLS.	A HADIAIUK & PIPING & MAIER			-	••••	1	
R R		2	ENGINE ACCESSO		27	• 2	1. I	
			POWER UNIT. PUELS	-	432	34		
3	GA115 26			TANKS			29.7	
1 ~ 1	GALLS 26	SUPPLIES.	FUEL TANKS	191999 100	24	94 ju pr		
۵	HOURS 2'A	2	OIL TANKS & PIPI FUEL	U Louis Coil 6%	13	14.00		
	10 KS C'R	5	OIL		180	1.4		
					63	• 5		
\vdash		W	EIGHT OF POW	ER UNIT.	712.	5-6	49·0	
	E CREW				180			
							/30	
0	O 30 CAMERA							
•	183 W.T.							
0								
اد ا	GUNS & AMMUNITION BOMBS & GEAR ARMOUR						<i>ŀ</i>	
	ARMOUR							
	TOTAL WEIGHT OF LOAD UNIT.				- 291	2.3	20.0	
4						-	20.0	
Total WEIGHT OF MACHINE 1454 6.3 PT 100.0					100-0			
13932	e							

FIG. 5. ANALYSIS OF WEIGHT. SOPWITH-CAMEL.	F1G. 5.	ANALYSIS (OF WEIGHT.	SOPWITH-CAMEL.
--	---------	------------	------------	----------------

Structure	31%
Powerplant	32%
Fuel	17%
Load	20%
	100%


Loads Balance


P = L - W

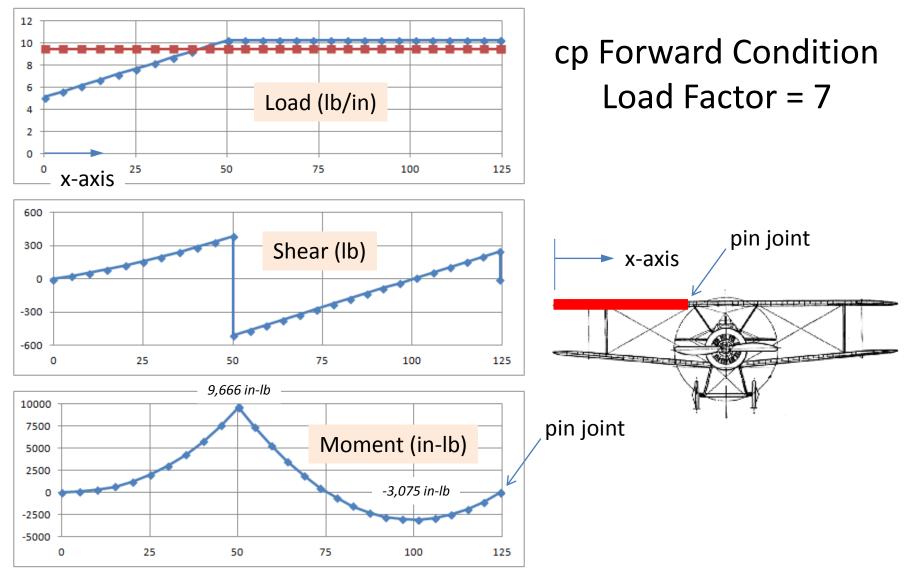
Condition	W (lb)	e (in)	d (in)	L(lb)	P (lb)
cp fwd	1455	-5.9	147	1399	-56
cp aft	1455	4.9	147	1505	50
	T				

Wing Load Distribution

Spar Load Distribution

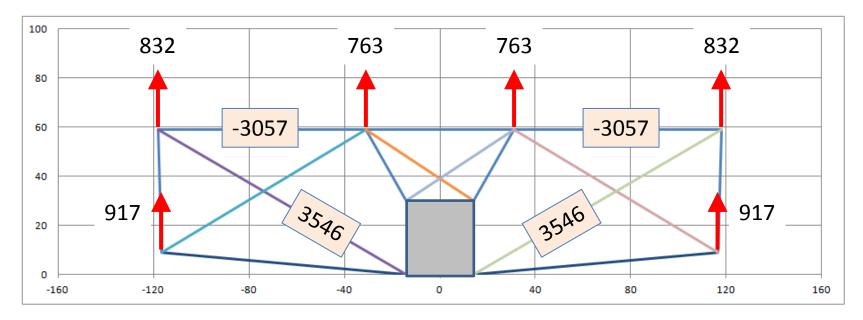
 w_T = running load (per length of span) a = distance from LE to front spar

b = distance from front spar to aft spar

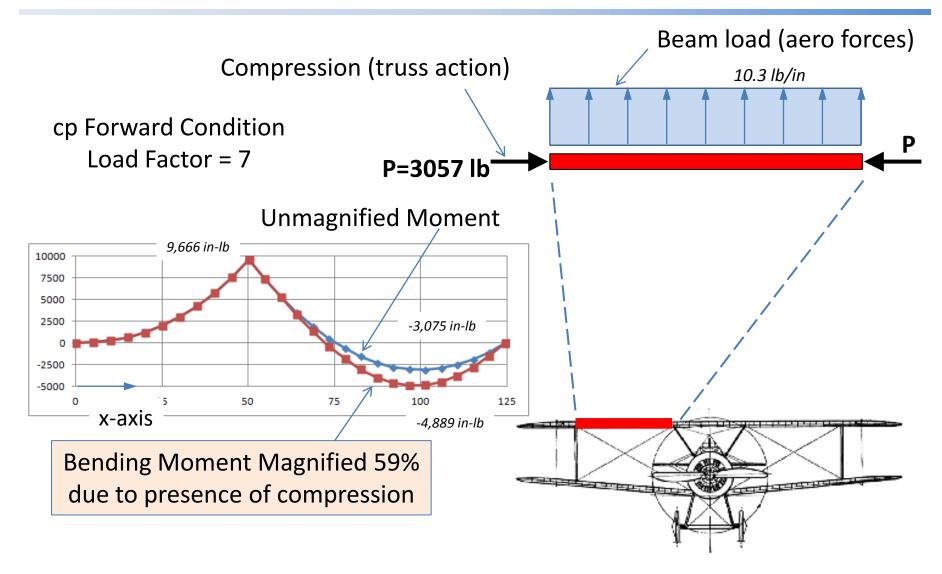

 x_{cp} = distance from LE to cp for load condition

Load on Front Spar = $\left(\frac{a+d-x_{cp}}{d}\right)w_T$

Load on Aft Spar =
$$\left(\frac{x_{cp} - a}{d}\right) W_T$$


Load Facto	or = 1				``	,
Condition	w _T (lb/in)	x _{cp} (in)	a (in)	d (in)	Front Spar Load (Ib/in)	Aft Spar Load (Ib/in)
cp fwd (0.3c)	2.00	16.2	6.9	27.4	1.32	0.68
cp aft (0.5c)	2.14	27	6.9	27.4	0.57	1.57

Front Upper Spar Bending Loads


Front Truss Loads

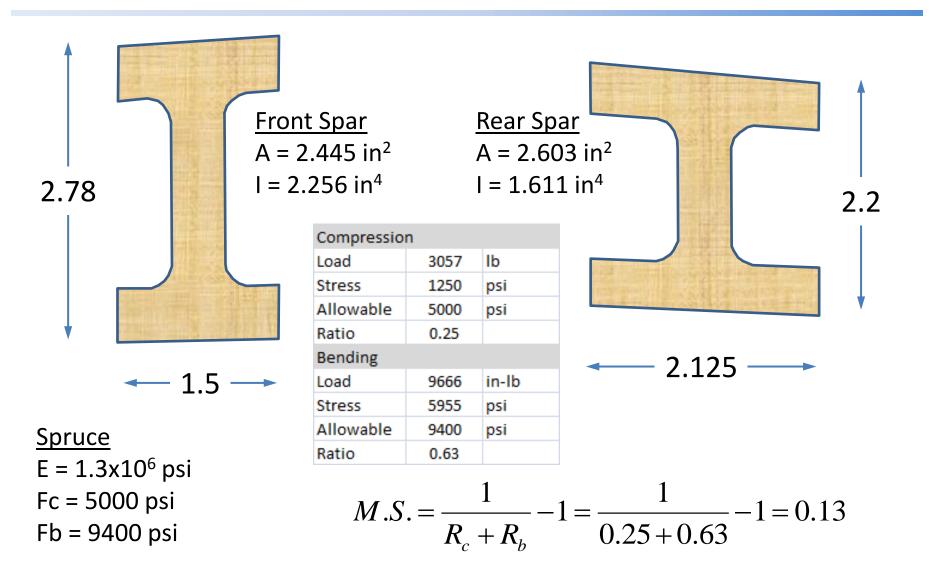
cp Forward Condition Load Factor = 7

Spar compression load = -3057 lb Lift wire tension load = 3546 lb

Beam-Column Magnification

Flying Wires

Steel Flying Wires ¼" BSF Strength = 3450 lb


Total Load = 3546 lb Load per wire = 1773 lb

$$M.S. = \frac{3450}{1773} - 1 = 0.95$$

Flying wires were doubled for extra safety

Spar Stresses

After the War...

Sopwith Undergoes Voluntary Liquidation

Sopwith Camels

An ideal plane for the experienced pilot to get about with.

High Speed 110 M. P. H. Landing Speed 35 M. P. H. Fuel Capacity $4\frac{1}{2}$ hours.

We have a few slightly used camels at attractive prices.

THE LAWRENCE SPERRY AIRCRAFT CO., INC. Farmingdale, Long Island, N. Y.

Phone Farmingdale 133

Summary

- Biplanes are structurally efficient (due to truss action) and were dominant in WW1 & the 1920s
- Monoplanes became more prevalent as engine power and speeds increased in the 1930s, becoming dominant in WW2
- The WW1 era structural analysis process was similar to todays, but we use more complex models, more load conditions, and durability is more important

References

- 1. Aeroplane Structures, Pippard & Pritchard, Longmans, 1919
- 2. Aeroplane Structural Design, T.H. Jones & J.D. Frier, Pitman, 1920
- 3. Schedule of Load Factors for Heavier-than-Air Craft, Advisory Committee for Aeronautics, Reports & Memoranda, No. 673, Jan. 6, 1920
- 4. Note on an Empirical Formula for Aeroplane Strength, A.J.S. Pippard, Aeronautical Journal, April, 1920
- 5. The Aeroplane of Consistent Strength, A.J.S. Pippard, Engineering, Jan. 30, 1920
- 6. British Aeroplanes 1914-1918, J.M. Bruce, 1957
- Pure Luck: The Authorized Biography of Sir Thomas Sopwith, Alan Bramson, 1990
- 8. Ghosts of the Great War: Aviation in World War One, Philip Makanna, 2005
- 9. The Performance Paradox: W.W.I Fighter Design, Javier Arango, Society of Experimental Test Pilots, 53rd Symposium, 23-26 September 2009
- Sopwith Camel Drawings, Jim Kiger, Replicraft, Fremont, CA (6 sheets, 30"x77")

Disclaimer: The calculations shown here were made in the interest of historical study only. Due to the unavailability of certain key data, assumptions had to be made which mean that the results presented here cannot be used for a real airplane. Do not use any of the numbers presented here for any purpose.